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Network routing

By F. P. KeLLy

Statistical Laboratory, University of Cambridge, 16 Mill Lane,
Cambridge CB2 18B, U.K.

How should flows through a network be organized, so that the network responds
sensibly to failures and overloads? The question is currently of considerable
technological importance in connection with the development of computer and
telecommunication networks, while in various other forms it has a long history in the
fields of physics and economics. In all of these areas there is interest in how simple,
local rules, often involving random actions, can produce coherent and purposeful
behaviour at the macroscopic level. This paper describes some examples from these
various fields, and indicates how analogies with fundamental concepts such as energy
and price can provide powerful insights into the design of routing schemes for
communication networks.
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1. Introduction

Modern computer and telecommunication networks are able to respond to randomly
fluctuating demands and failures by rerouting traffic and by reallocating resources.
They are able to do this so well that, in many respects, large-scale networks appear
as coherent, almost intelligent, organisms. The design and control of such networks
require an understanding of a variety of fundamental issues, and this is providing an
important stimulus to many areas of mathematics and engineering.

To give an example of current importance, a major practical and theoretical issue
concerns the extent to which control can be decentralized. Over a period of time the
form of the network or the demands placed on it may change, and routings may need
to respond accordingly. It is rarely the case, however, that there should be a central
decision-making processor, deciding upon these responses. Such a centralized
processor, even if it were itself completely reliable and could cope with the
complexity of the computational task involved, would have its lines of com-
munication through the network vulnerable to delays and failures. Rather, decision-
making should be decentralized and of a simple form: the challenge is to understand
how such decentralized decision-making can be organized so that the network as a
whole reacts intelligently to outside stimuli.

The behaviour of large-scale systems has been of great interest to mathematicians
for over a century, with many examples coming from physics. The behaviour of a gas
can be described at the microscopic level in terms of the position and velocity of each
molecule. At this level of detail a molecule’s velocity appears as a random process,
with a stationary distribution as found by Maxwell (and later discussed by Erlang
(1925)). Consistent with this detailed microscopic description of the system is
macroscopic behaviour best described by quantities such as temperature and
pressure. Similarly the behaviour of electrons in an electrical network can be
described in terms of random walks, and yet this simple description at the
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344 F. P. Kelly

microscopic level leads to rather sophisticated behaviour at the macroscopic level:
the pattern of potentials in a network of resistors is just such that it minimizes heat
dissipation for a given level of current flow (Thomson & Tait 1879). The local,
random behaviour of the electrons causes the network as a whole to solve a rather
complex optimization problem.

Of course simple local rules may lead to poor system behaviour if the rules are the
wrong ones. Road traffic networks provide a chastening example of this. Braess’s
paradox describes how, if a new road is added to a congested network, the average
speed of traffic may fall rather than rise, and indeed everyone’s journey time may
lengthen. The paradox may actually have occurred during ‘development’ in the
centre of Stuttgart (Knddel 1969), and counterintuitive consequences of road
closures are often reported (New York Times 1990). The attempts of individuals to do
the best for themselves lead to everyone suffering. It is possible to alter the local
rules, by the imposition of appropriate tolls, so that the network behaves more
sensibly, and indeed road traffic networks have long provided a key example of the
economic principle that externalities need to be appropriately penalized if the
invisible hand is to lead to optimal behaviour (Pigou 1920; Walters 1961).

A telephone network provides a fascinating example of a large-scale system where
strange effects can occur. For instance, suppose that ‘intelligent’ exchanges react to
blocked routes by rerouting calls along more resource-intensive paths. This in turn
may cause later calls to be rerouted, and the cascade effect may lead to a catastrophic
change in the network’s behaviour. When exchanges strive to be efficient there is a
possibility they may overdo it. In some respects the network’s behaviour resembles
water boiling. Just as a small change in the temperature of a body of water can cause
a pronounced macroscopic effect, so a small change in the load on a network can
produce an unexpected and massive failure. This discussion indicates the care that
must be taken with the development of routing rules for large networks.

There is currently considerable interest in the similarities between complex
systems from diverse areas of physics, economics and biology, and it is clear that
topics such as noisy optimization and adaptive learning provide mathematical
metaphors of value across many fields. The reader is referred to Pines (1987),
Anderson et al. (1988) and Langton (1989) for the lively and thought-provoking
proceedings of a series of workshops, and to Whittle (1986) for a study of statistical
equilibrium in systems of interacting components that is both broad and penetrating.
Our aim in this paper is, by comparison, much narrower: to describe within a
common framework some examples from three areas, and thus to indicate how
earlier, often much earlier, work on electrical networks and traffic flow has influenced
recent work on routing schemes for communication networks.

In §2 we outline the connections among random walks, electrical networks and
variational principles. We describe how an interacting particle system, precisely
defined at a microscopic level in terms of simple, randomized, local rules, can also be
described at an intermediate level of aggregation in terms of Ohm’s Law and
Kirchhoff’s equations, and at a macroscopic level in terms of energy minimization.
The interacting particle system we describe is due to Kingman (1969), and our
treatment of the associated optimization problem derives from Whittle (1971). For
a beautifully written account of the area, and of its history back to Lords Rayleigh
and Kelvin, the reader is referred to Doyle & Snell (1984).

In §3 we consider multiclass flow models, including queueing and road traffic
networks. If customers or drivers can choose their routes, then exercise of this choice
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may force the system to a competitive equilibrium. If drivers attempt to minimize
their own delay the resulting equilibrium flows will minimize a certain objective
function defined for the network. However, the objective function is certainly not the
average network delay: this is dramatically illustrated by Braess’s (1968) paradox,
outlined above. We describe a variant of this paradox: if drivers are provided with
extra information about random delays ahead, the outcome may well be a new
equilibrium in which delays are increased for everyone. Traffic-dependent tolls are
sufficient to force the system to an equilibrium which minimizes average network
delay: the tolls charge drivers for the delays they cause to others. The study of
appropriate tolls has long been a topic of central importance in economics, and it is
interesting to note that Pigou (1920, p. 194) used a simple two-node, two-link traffic
network to illustrate the possibility that taxation could ‘create an ‘““artificial”
situation superior to the “natural” one’. (We note in passing that developments in
electronics now make feasible the practical application of both route guidance and
road pricing (van Vuren & Smart 1990).) Potts & Oliver (1972) survey the
characterization of equilibrium flow patterns as extremal values, and Nagurney
(1987) provides a recent review of competitive equilibrium problems including more
general traffic network models and related models of economic markets.

In the remainder of the paper we outline more recent work on the modelling of
telecommunications networks. In §4 we show how the microscopic description of a
telephone network, in terms of random arrival streams and rules for accepting and
routing calls, leads the network to behave as if it is attempting to minimize a certain
potential function. However, just as in road traffic networks, the potential function
implicitly minimized may bear little relation to the network performance criteria of
interest to system designers. Indeed Wroe et al. (1990) have described an example
very similar to Braess’s paradox, that has arisen in the design of the BT international
access network, where the addition of capacity to a network causes the performance
to become worse. Various other forms of perverse behaviour can be interpreted in
terms of an implicit minimization: for example, in situations where alternative
routing causes the potential function to have multiple minima, a slight change in
traffic load may cause the network to jump catastrophically between minima. In §5
we discuss how explicit consideration of network performance criteria can lead,
through notions of shadow prices and implied costs, to decentralized adaptive
routing schemes which are at least attempting to optimize the right function.

Might it be possible to choose the microscopic rules governing the behaviour of a
telephone network, the rules for accepting and routing calls, so that the network is
implicitly optimizing sensible performance criteria, much as current flow in an
electrical network is implicitly minimizing heat dissipation? This is a difficult and
wide-ranging question, but at least in some circumstances it can be answered
positively. In §6 we describe a scheme which has been developed for the British
telephone network by researchers at Cambridge and at British Telecom’s laboratories
at Martlesham. The scheme, known as Dynamic Alternative Routing (DAR), is now
being implemented in the British trunk network (Stacey & Songhurst 1987 ; Gibbens
1988 ; Gibbens et al. 1988 ; Key & Whitehead 1988). The scheme will lessen the impact
of forecasting errors, make better use of spare capacity and respond robustly to
failures and overloads. It will also permit flexible use of network resources enabling,
for example, the rapid introduction of new services where demand is often uncertain.
DAR uses very simple rules across the network, making constructive use of inherent
randomness to search out good routing patterns. In this way the network itself
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346 F. P. Kelly

operates as a distributed computer, executing a highly parallel randomized algorithm
to solve a complex optimization problem.

2. Random walk and electrical networks

We begin this section by describing a simple flow model due to Kingman (1969)
and further discussed by Kelly (1979). The model can be viewed as a naive
description of the movement of electrons in a conductor, and we shall phrase our
discussion in terms of familiar electrical concepts such as current and potential. We
use the model to develop the connections between random walks, electrical networks
and variational principles.

Consider, then, the following interacting particle system. There is a set of sites, J/,
and each site jeJ may be empty or may be occupied by a single particle. If site j is
occupied and site & is empty then, with probability intensity A;, (= A;;), the particle
at site j moves to site k. If site j is occupied then, with probability intensity u;, the
particle at site j leaves the system entirely. If site & is empty then, with probability
intensity v,, a particle arrives at site £ from outside the system. These rules define
a finite state Markov process, about which we can ask a number of questions. What
is the stationary probability p; that site j is occupied ? What is the average net rate
of flow of particles from site j to site k?

To answer these questions consider the following button model. Append to the set
of sites J two further sites, labelled 0 and 1, and let each site contain a single button.
The buttons are distinguishable ; we can imagine them to be of different colours. The
buttons occupying sites j and £ interchange positions with probability intensity A,
for j,keJ U {0, 1}, where

Aoj = Ajo = 1t Ay = A5 =

5 JE,

and Ay = A,y = 0. We see that any particular button performs a symmetric (and
hence reversible) random walk around the sites of the system. Now imagine that
buttons entering site 1 are painted black, while buttons entering site 0 are painted
white. If 4 is the set of those sites j€J which contain a black button then 4 behaves
stochastically just as does the set of occupied sites in the earlier interacting particle
system. Thus to find the probability p; that site j is occupied we need only look
backwards through time at the earlier movements of the button which currently
occupies site j. These movements form a symmetric random walk starting from site
J with transition intensities A, for j,keJ U {0, 1}; p; is equal to the probability that
this random walk reaches site 1 before site 0. Considering where the first step of the
random walk takes the button leads to the equations

N /\Jk
p]' - %Zz /ljipk’

Po=0, p=1

We can rewrite these equations as

ZAu(;—p) =0, jed, (2.1)
k

jed,

Po=0, p, =1. (2.2)
Equations (2.1) and (2.2), however, are precisely Kirchhoff’s equations for an
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electrical network with nodes from the set JJ U {0, 1}: just interpret p; as the electrical
potential of node j, connect nodes j and £ by a wire of resistance A3, and hold nodes
0 and 1 at potentials 0 and 1 respectively. Equation (2.1) simply states that the total
current flowing out of node j is zero.

The average net flow of particles from site j to site k is

A, Pisite j occupied and site k empty} —A,; P{site j empty and site k& occupied}
= (P —Pr)-
Put more formally, the system is a finite state Markov chain, and hence the net flow
of particles from site j to site k£ over a time interval [0, 7] will almost surely converge
as T'—o0 to
Ui = Aj(P;— Pi)- (2.3)
This, however, is precisely the current flowing from node j to node k in the electrical
network ; equation (2.3) is just Ohm’s law. The average flow of particles through the
network can be calculated from either the flow out of node 1, or the flow into node
0, and is
U=XA(1=pp) = Z A0 (2.4)
k J

which is precisely the total current flowing through the electrical network.

The energy dissipated by a potential difference of p,—p, across a wire of resistance
A5l is the product of the current and voltage, and is thus Ay (p;—p,)®. The energy
dissipation in the above electrical network is then

) Ajk‘(pj_plc)za
ik
where the summation runs over j,keJ U {0,1}, and the factor § is necessary since
each edge is counted twice in the sum. Consider the following problem.

Minimize 3 Aj(p;—pp)?, (2.5a)
ik

over (p;,j€d), (2.5b)

subject to p, =0, p,=1. (2.5¢)

The objective function (2.5a) is strictly convex, and a differentiation yields that the
unique optimum is given by the solution to Kirchhoff’s equations (2.1) and (2.2). This
is the Dirichlet principle : the potentials taken within the electrical network minimize
the total energy dissipation.

The energy dissipated by a current flow u, through a wire of resistance A;! is
u2,/A;;. Consider, then, the following problem, where the objective function is again
the energy dissipation of the network, but now expressed in terms of currents rather
than potentials.

Minimize § X uj,/Ay, (2.6a)
ik
over uu(=—uy), Jj,keJ U{0,1}, (2.60)
0 jed,
subject to Xuy =41-U j=0, (2.6¢)
k U j=1.
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The conditions (2.6¢) require a flow U of current into the network from node 1, a flow
U of current out of the network to node 0, and that flow be balanced at nodes je.J.
Again the objective function is strictly convex : hence the optimum is unique and can
be obtained by differentiating the lagrangian form

L{u;p) =32 u]gk//\jlc_zz:pj(zujk>’
ik i k
where p;,jeJ U {0, 1}, are now Lagrange multipliers, and where for later convenience
we have introduced an extra factor of 2 before the constraints.
Differentiating L with respect to u; we obtain

OL /0wy, = 2(uy/ A — s+ ),

since uy; = —uy,. Thus the optimum takes the form

e = A (0, —py), Joked U {0, 1},

for a choice of Lagrange multipliers p; that cause the resulting w;, to satisfy the
constraints (2.6¢); but the p;s that solve (2.1) and (2.2) are such a choice. Thus the
Lagrange multipliers should be set equal to the electrical potentials, and the resulting
flows w;;, are optimal. This is Thomson’s principle: the flow pattern of current within
an electrical network is that which minimizes the energy dissipation over all flow
patterns achieving the same total current.

Together the Dirichlet principle and Thomson’s principle provide one of the many
examples from physics of complementary variational principles (Whittle 1971).
From the viewpoint of optimization theory, if the problem (2.6) is recast as one of
maximizing flow for a given energy dissipation then it is possible to obtain the
problem (2.5) as the formal lagrangian dual.

In this section we have seen an example of a system which can be viewed at various
levels of abstraction. At the microscopic level, it can be viewed in terms of particles
performing simple random walks. If average rates of particle flow are studied, then
these flows are given by Kirchhoff’s equations (2.1), (2.2), and Ohm’s law (2.3).
Finally, at the network level, the flow patterns that emerge solve a constrained
optimization problem whose objective function is the network’s energy dissipation.

Thomson’s principle, in particular, is an extremely useful and suggestive result. It
follows directly that if a link is added to an electrical network and the same total
current is carried then the energy dissipation is reduced: after all, the old flow
pattern remains feasible for the new optimization problem. Might it be possible to
design telecommunication networks similarly, so that, for example, additions of
capacity are necessarily helpful ¢ Before considering this question further, we look
first at queueing networks, and the ways in which implicit optimization can go
wrong.

3. Queueing networks and traffic flow

In the interacting particle system of the last section the particles behaved
similarly, each attempting to perform a symmetric random walk. In this section we
study a more complicated system, where particles are of different classes and where
class determines the direction of flow through the network.

We begin with a brief description of an open multiclass network of - /M/1 queues
(for a more leisurely introduction see Kelly (1979)). Let the network have a set J of

Phil. Trans. R. Soc. Lond. A (1991)
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queues, and suppose that a customer entering the system is labelled with the route
he will follow through the network. More specifically, suppose that customers
labelled r = (r(1),7(2),...,7(M,)) arrive at the system in a Poisson stream of rate v,
and pass through the sequence of queues

r(1),7(2),...,rM,),

before leaving the system. Thus the queue which a customer labelled r visits at stage
m(=1,2,...,M,) of his passage through the network is queue r(m). Write R for the
set of possible routes, and assume that as r varies over R it indexes independent
Poisson arrival streams. Let each queue have a single server operating a first come
first served discipline, and suppose that a customer visiting queue j has a service time
there which is exponentially distributed with parameter ¢; and independent of all
other service times and of the arrival streams at the network.

Write jer if route » passes through queue j at some stage, and, for simplicity of
notation, suppose no route passes through the same queue more than once. Let

p]' = Z Viy
r.jer
and suppose p; < ¢;,j = 1,2,...,J. Thus p; measures the throughput of queue j.
Let n,(t) be the number of customers in queue j at time ¢, and let n(t) = (n,(t),
j€J). Then the (non-Markov) stochastic process (n(t), f > 0) has a unique stationary
distribution, and under this distribution 77(n) = P{n(¢) = n} is given by

m(n) = 11 m(n;), (3.1)
jeJ
where m(m;) = (1=py/ ) 03/ $5)"™, (3.2)

the geometric distribution familiar as the stationary distribution of an M /M /1 queue
with arrival rate p;. From the distribution (3.2) and Little’s formula it follows that
the mean sojourn time of a customer in queue j is

Dy(p;) = (¢;—py) " (3.3)

Sometimes we prefer to observe the network from the point of view of customers
labelled . When a typical customer labelled » arrives at a queue j on his route, the
probability he finds n; customers already in that queue is given by expression (3.2);
the sojourn time of a typical customer labelled » in a queue j on his route is
exponentially distributed with parameter ¢,—p;.

A wide range of more general queueing networks share properties of the simple
network described above, that the stationary distribution for the numbers in
different queues has the product-form (3.1), and that the mean sojourn time of a
customer in queue j is a function D;(p;) of the throughput of queue j.

Suppose now that it is possible to vary the parameters v,. For example, if the
model represents a packet-switched communication network, there may be a variety
of possible routes r through the network capable of linking two nodes, and the
network may be able to shift traffic to routes with lower mean delays. More formally,
let the label s of a customer arriving at the network identify not a single route, but
a set of routes, any of which could serve the customer. We can view s as labelling a
source-sink node pair. Set H,, = 1 if 7€ s, so that a customer labelled s can be served
by the route r, and set H,, = 0 otherwise. This defines a 0—1 matrix H = (H,,,s€eS,

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

Py
/,// \\
J

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

350 F. P. Kelly

re R). For each re R let s(r) identify the unique value s€.S such that H,, = 1; we thus
view s(r) as the source-sink node pair served by route r. Let 4;, = 1 if route r passes
through link j, and set 4;, = 0 otherwise. This defines a 0 —1 matrix 4 = (4,,,j€J,
reR).

A Wardrop equilibrium is a collection v = (v,,7€R), p = (p;,j€J) of non-negative
numbers such that

Hyv =0, (3.4a)
Av = p, (3.40)
and
v, >0 =3 Dip;) = min ¥ Dy(p;), reR. (3.4¢)
Jer r'es(r) jer’

Equation (3.4a) states that the traffic over routes » serving the node pair s sums to
by, while equation (3.4b) states that the traffic over routes through link j sums to p;.
The implication (3.4c¢) expresses the defining characteristic of a Wardrop equilibrium
(Wardrop 1952), that if a route 7 is actively used, it achieves the minimum delay over
all routes serving the node pair s(r).

Does a Wardrop equilibrium exist, and, if so, is it unique ? To answer this question,
consider the following optimization problem.

Pj

Minimize X | D;(z)dz, (3.50a)
jeJ JO

over v,p=0, (3.5b)

subject to Hv =56, Av=p. (3.5¢)

Impose the mild condition that D;(z) is continuous and strictly increasing. Then the
optimum can be found by differentiating the lagrangian form

Pj
Lwv,p; A, p) =2 ]Dj(z) dz+AT(b—Hv)—u (p—Av),

jeJ J O

where A, 4 are vectors of Lagrange multipliers. But

oL
a_V, = —/\s(r) +j§rluj’
and oL/0p; = Dy(p;) — p;.

Hence a maximum of L over v,p > 0 occurs when

My = Dj(pj)
and

Asy = 2py if v, >0
Jjer

<X if v, =0.
jer
The Lagrange multipliers have a simple interpretation : 4; is the delay on link j, and
A, is the minimum delay over all routes serving the node pair s. The minima of the
objective function (3.5a) correspond precisely to Wardrop equilibria. Since D;(z) is
strictly increasing the objective function (3.5a) is a strictly convex function of p.

Phil. Trans. R. Soc. Lond. A (1991)
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(®)

oy
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Figure 1. Braess’s paradox. The addition of a link causes everyone’s journey time to lengthen.
(After Braess 1968; Cohen 1988; Cohen & kelly 1990.)

Hence there is a unique optimum for the flow vector p, although there may be many
corresponding values of the non-negative vector v satisfying the linear relations
(3.5¢).

Thus, if traffic in the network distributes itself towards routes with lower mean
delays, the equilibrium flows p = (p;,j€J) will solve the optimization problem (3.5).
This does not mean that average delays in the network will be minimal: and a striking
illustration of this fact is provided by Braess’s paradox (Braess 1968; Cohen & Kelly
1990). Consider the network illustrated in figure 1a. Cars travel from node 1 to node
4, via either node 2 or node 3. The total flow is 6, and the link delays D,(p) are given
next to links in the figure. The Wardrop equilibrium is shown. Now suppose that a
new link is added, between nodes 2 and 3, as shown in figure 15. Traffic is attracted
onto the new link, and the new Wardrop equilibrium is shown in figure 16. Observe
that each car incurs a delay of 83 in figure 1, while each care incurs a delay of 92
in figure 1b. Adding the new link has increased everyone’s delay !

The point, of course, is that, while the Wardrop equilibrium minimizes the
function (3.5a), this objective function is not closely related to average delays.
Consider next the following problem.

Minimize % p; D;(p;), (3.6a)
jeJ

over v,p=0, (3.6b)

subject to Hv =10, Av=p. (3.6¢)

Note that the objective function (3.6 @) now measures average network delay. Impose
the fairly mild condition that the function (3.6a) is convex and differentiable. The
lagrangian for this problem is
L(v,p; A, ) = X p; Dy(py) + AT (b—Hv)—p"(p—Av).
jeJ

Phil. Trans. R. Soc. Lond. A (1991)
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Again

oL

6;; = _/\s(r) +j§€:r/"j:
but now

0L/3p; = Dy(p;) + p; Di(p;) — py-

Hence a maximum of L over v, p > 0 occurs when

w; = Dj(p;) +PjD;(Pj),
and

Asy = ZILL]. if »v,>0
Jer
<X if v, =0.
Jer
Again the Lagrange multipliers have a simple interpretation. Suppose that, in
addition to the delay D;(p;), users of link j incur a traffic-dependent toll

Ti(py) = p; Di(py)- (3.7)

Then u; is the combined cost of using link j, and A; is the minimum cost over all routes
serving the node pair s. If users select routes in an attempt to minimize the sum of
their tolls and their delays, then they will produce a flow pattern which minimizes
the average delay in the network (3.6a).

In an electrical network, the addition of an extra wire connecting two nodes
cannot increase the energy dissipation associated with a given current flow. We have
seen that this follows from Thomson’s principle, since the flow pattern before
addition of the wire remains feasible afterwards. Similarly, in a traffic network with
tolls (3.7) the addition of a new link cannot increase average network delay, since the
old flow pattern remains feasible for the new optimization problem (3.6), and so if the
new flow pattern is different it must improve the objective function (3.6a).

In our above discussion of equilibrium flow patterns we have assumed that users
are aware of the average delays D,(p;), and perhaps tolls 7}(p;), along different routes.
What if, instead, users do not know these quantities precisely, but have to rely on
their previous experience along routes? To provide a clear framework for our
discussion of this question, consider again the multiclass queueing network described
at the beginning of this section. Suppose that a user travelling between a source—sink
pair s makes this journey repeatedly, but at times separated by long intervals, and
that the user observes queue lengths or sojourn times at queues as he passes through.
From these observations a user can estimate average delays D,(p;) at queues jer, for
each route res. If users attempt to minimize their own delays across the network
then it is reasonable to expect the stationary behaviour of the network to be
described by the multiclass queueing network described earlier, with stationary
distribution (3.1)—(3.2) where p = (p;, j€J) is the Wardrop equilibrium. This type of
equilibrium is often termed adaptive or quasi-static: on a short timescale arrivals at
the network are adequately described by Poisson streams of rates v,, re R, while the
rates themselves adapt over a longer timescale.

Next consider the case where tolls are imposed to encourage traffic towards a
system optimal flow pattern. One possibility is that queue j could itself estimate p,,
the traffic through it, and hence estimate the correct toll 7j(p;). Such an approach has
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been carefully investigated in the important paper of Gallager (1977), where an
implementation particularly suited to data networks is developed, and adaptive
convergence to the system optimal flow pattern is established. Another possibility is
that queue j might charge a toll ¢;(n) dependent on the number % in queue j just after
a user has arrived, or a toll ¢;(D) dependent on the actual sojourn D of the user in
queue j. In either case it will be required that the expected toll be T}(p;), in order that
the system optimal flow pattern be encouraged. Now n—1 has the geometric
distribution (3.1), and D has an exponential distribution with parameter (¢;—p;).
Hence we can deduce that the linear tolls

ti(n) = p;n/)d;—p;), n=12.., (3.8a)
t,(D) = p;D/($;—p;), D=0, (3.80)

lead to the correct expected tolls. These linear tolls also have the property that they
charge a user precisely the externality he causes: for example, the toll (3.8a) can be
shown to be the mean additional delay caused to other users of queue j if an
additional user is added to queue j bringing its queue size to n. Note that linear tolls
may be easy to enforce : for example, the toll (3.86) corresponds to charging each user
a flat rate p;/(¢,— p;) per unit time he spends in queue j. Against this it can be argued
that the tolls depend on p; and ¢;; while the queue may know its service rate ¢;, if it
is forced to estimate p; then a statistically more efficient feedback signal to users
would be the average toll Tj(p;).

Do there exist tolls which do not require queue j to estimate mean levels of traffic ?
More formally, are there tolls t;(n) or t;(D), possibly dependent on ¢;, which have
expectation Tj(p;) for all values of p;, but which do not depend on p;? In fact

ti(n) =nn—1)/2¢;, n=1,2..., (3.9a)
t;(D) =4p,D*—D, D=0, (3.90)

are the unique functions of n or D, respectively, which have expectation Tj(p;) for
every p; > 0. That they have the correct expectations follows by calculation from the
geometric and exponential distribution of n—1 and D, respectively; that they are
unique follows since the geometric and exponential distributions are complete
(Lehmann 1986). The toll (3.96) may be negative, although it plus the delay D will
be positive. The expected delay on finding » is n/¢;, and this plus the toll (3.9a) gives
the total n(n+1)/2¢, proposed by Whittle (1985, 1986). It is interesting to note how
rapidly these tolls grow with n or D; the quadratic functions (3.9) contrast markedly
with the linear functions (3.8).

The multiclass network of * /M/1 queues which has led to the forms (3.8) and (3.9)
is a very special case, but it is certainly possible to extend the results further. We
might, for example, want the delay through a queue to be distributed more like a
normal than an exponential random variable. But a series of m :/M/1 queues
produces a delay D distributed as a gamma random variable with parameters m and
¢;—p;: for such a system

Ti(p;) = mp;(d;—p;) 7%
and t(D) = ¢;D*/(m+1)—D, D=0,

is the unique function of d with expectation Tj(p,) for every traffic level p;.
Throughout this section we have been concerned with adaptive routing; many

interesting questions arise in connection with dynamic routing, where a user arriving

at the network may have access to some or full information about the current
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network state (see, for example, Laws 1990, 1991). The distinction between adaptive
and dynamic routing is not clearcut (see, for example, Kelly 1990), but one point is
worth making here. If the system is striving to optimize the wrong function, then
providing it with help, in the form of additional information, may damage
performance. We illustrate this with an adaptation of Braess’s paradox. Suppose the
link between nodes 2 and 3 in figure 16 has a delay p+10+X, where X is a random
variable taking the values 0 and 30 with equal probability. The random variable X
may indicate the presence or absence of road works, for example. If users do not
know the value of X then the expected delay along the link will be p+25, and the
Wardrop equilibrium will be as in figure 1a. Each car incurs a delay of 83. If all users
know the value of X then the equilibrium flow pattern will be either as in figure 1a,
if X = 30, or as in figure 1b, if X = 0. The expected delay, averaged over the two
possibilities, will be 1(83+92) = 874 Providing all users with knowledge of X
increases everyone’s delay!

Current developments in electronics make feasible the practical application of both
route guidance and road pricing (van Vuren & Smart 1990 ; Hoffman 1991) and the
above discussion further emphasizes the importance of considering these topics
together. If a system is encouraged to strive more aggressively towards an implicit
objective, it becomes even more important that the objective is not perverse.

4. Loss networks

In this section we describe the basic theory of a loss network. The classical example
is a telephone network, and we shall phrase our discussion in terms of calls, circuits
and routes. However, the readers will observe that our model applies more widely to
systems in which before a request (which may be a call, or a task, or a customer) is
accepted it is first checked that sufficient resources are available to deal with the
request.

Consider then a network with links from a set J, and suppose that link je.J
comprises C; circuits. A subset r < .J identifies a route. Calls requesting route r arrive
as a Poisson stream of rate v,, and as » varies it indexes independent Poisson streams.
A call requesting route r is blocked and lost if on any link j € r there is no free circuit.
Otherwise the call is connected and simultaneously holds one circuit on each link
Jer for the holding period of the call. The call holding period is randomly distributed
with unit mean and independent of earlier arrival and holding times. Write R for the
set of possible routes. Set 4;, = 1 if jer, and 4;, = 0 otherwise. This defines a 0—1
matrix 4 = (4;,,jeJ,reR).

Let n,(t) be the number of calls in progress at time ¢ on route r, and define the
vectors n(t) = (n,(t),re R) and C' = (0}, jeJ). Then the stochastic process (n(t),t = 0)
has a unique stationary distribution, and under this distribution 7(n) = P{n(t) = n}
is given by

n(n) = GO L, ne (), @.1)
reR ",
where FL(C)={ne”: An <}, (4.2)

and G(C) is the normalizing constant (or partition function)

6(C) = ( s I L) (4.3)

nes () rer Mr
Phil. Trans. R. Soc. Lond. A (1991)
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This result is easy to check in the case where holding times are exponentially
distributed : then (n(t),t = 0) is a Markov process and the distribution (4.1) satisfies
the detailed balance conditions

v,mn) = (n,+1)m(n+e,), n,n+e.eF(0),

where e, = (I[+' = r],7" € R) is the unit vector describing just one call in progress on
route r. In this form the result has been known for many years (see Brockmeyer
et al. 1948): that the form (4.1) is insensitive to the holding time distributions is an
example of the modern theory of insensitivity (see, for example, Whittle 1986).

Most quantities of interest can be written in terms of the distribution (4.1) or the
partition function (4.3). For example let L, be the proportion of calls requesting route
r that are lost. Since the arrival stream of calls requesting route r is Poisson,

1-L,= X 7n)=GC)*GC—Ae,). (4.4)
nes (C—Ae,)

Such simple explicit forms might be thought to provide the complete solution.
However, this is far from the case. For all but the smallest networks it is impractical
to compute G directly: observe that the number of routes |R| may grow as fast as
exponentially with the number of nodes |/|, and that in the (otherwise trivial) case
when |R| = |J] and 4 = I the size of the state space |#(C)| =11, C; grows rapidly
with the capacity limitations C},jeJ. The theory of computational complexity
allows these remarks to be stated more formally. Louth (1991) has shown that, even
in the restricted case where links have capacity 1 and arrival rates are equal, the task
of computing the partition function (4.3) is #P-complete. Nevertheless, might a
randomized algorithm, for example rejection sampling from the truncated Poisson
distribution (4.1) or simulation of the underlying stochastic process, lead to an
answer of any required accuracy, without the calculation growing exponentially with
either the system size or the required accuracy ¢ Again the answer is in general no:
there can be no fully polynomial randomized approximation scheme for the task of
computing the partition function (4.3), unless RP = NP (Jerrum & Sinclair 1990;
Louth 1991). Simulation is a valuable tool for many particular network structures,
but these results indicate its limitations when dealing with arbitrary network
topologies. A theme of much recent work has been to find approaches which
complement computation and simulation with analytical insights.

Consider the problem of finding the most likely state » under the probability
distribution (4.1). This is equivalent to maximizing

2 (n,Inv,—Inn!),
;

over ne & (C), a problem which is complicated by the discrete nature of the state
space. To simplify things replace In n! by n In n—n (recall that by Stirling’s formula
In n! =nlnn—n+0(In n)) and replace the integer vector » by a real vector x. The
resulting problem is the following.

Maximize X (z,lnv,—z,In 2, +2,), (4.5a)
r

over x =0, (4.5b)

subject to Az < C. (4.5¢)

Observe that the objective function (4.5a) is differentiable and strictly concave
over the cone z = 0 and tends to — o0 as ||z| o0, and the feasible region (4.5¢) is a
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closed convex set. Hence a maximizing value of x exists and is unique, and can be

found by lagrangian methods (Whittle 1971). Consider, then, the lagrangian form
L(x,z;y) =X (¢, Inv,—x, Inx, +x,)+Xy,(C;,— X A;,2,—2)
J r

r

=Xz, +Xx(nv,—Inx, -3y, 4,)+Xy,C;—Xy;2,
r r j 7 J

where z = (z;,j€.J) is the vector of slack variables 2 = C'—Ax and y = (y;,j€J) is a
vector of Lagrange multipliers. To maximize L(x,z;y) over the cone z,z > 0 we
require that y = 0,4z = 0 and, differentiating with respect to z,,

Inv,—Inx,—Xy;4, =0.
Y

The maximizing x, is then

fr(y) =V, €Xp <_ Z yj)7 (46)
jer

and so
max L(x,z;y) = Zfr(y)_"zyj CJ’
r J

2,220

=2Xv,exp (—Xy)+Zy; 0}
r J

jer
Hence the lagrangian dual to the primal problem is the following.

Minimize Xv,exp (—Xy,)+Xy,;C; (4.7a)
J J

jer
over y = 0. (4.7b)

We may solve the primal problem (4.5) by choosing values for the Lagrange
multipliers y = 7 so that Z(¥), 7 are primal and dual feasible,

#G) 20, z=C—Az(@g) =0, 70 (4.8a)
and satisfy the complementary slackness conditions
7-2(y) = 0. (4.8b)
It is interesting to rewrite these conditions in terms of transformed variables
B;=1—exp (—y,) (4.9)

Under this transformation the conditions (4.8) on ¥ become the following conditions
on B = (B;,je).

Y nIl(1-B)=0C, if B;>0 (4.10a)
rijer ier

<, if B;=0, (4.10b)

B,,B,,...,B,€[0,1). (4.10¢)

The convexity properties of the primal problem (4.5) imply that there exist Lagrange
multipliers 7 satisfying (4.8), and hence that there exists B satisfying (4.10).
Alternatively, observe that the objective function of the dual problem (4.7a) is
differentiable and convex over the cone y > 0 and tends to oo as ||y| ~oc0. Hence an
optimum ¥ exists; differentiation of the dual objective function with respect to y,
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establishes a one-to-one correspondence under the transformation (4.9) between
optima of the dual problem and solutions B to conditions (4.10). Finally observe that
the mapping y+ yA is one-to-one from the set y > 0 if 4 has rank |J|. The objective
function of the dual problem (4.7) is thus strictly convex if 4 has rank |J|. Hence the
optimum % is unique if 4 has rank |J|.

In summary, we have shown that there exists a unique optimum to the primal
problem (4.5), and that it can be expressed in the form

x,=v,11(1-B;), reR, (4.11)
Jer
where B = (B;,j€J) is any solution to the conditions (4.10) on B. There always exists
a solution to the conditions on B, and it is unique if 4 has rank |J|. There is a one-
to-one correspondence between solutions to the conditions (4.10) on B and optima of
the dual problem (4.7), given by the transformation (4.9).

Conditions (4.10) have a straightforward interpretation in terms of a continuous,
or fluid, flow. Suppose that an offered flow of v, on route r is thinned by a factor
(1—B;) on each link ier so that a flow of

v, I1(1—-8,) (4.12)
ier
remains. Then conditions (4.10) state that at any link j for which B; > 0 the total
capacity of that link, C;, must be completely utilized by the superposition over routes
7 through link j of the flows (4.12). Conversely no thinning of flow is allowed at a link
which is not full.

We have made some approximations in the formulation of the primal problem
(4.5), and so the reader may well ask : What, precisely, is the connection between the
simple form (4.11) and the distribution (4.1)? This connection we now outline.

The distribution (4.1) is that of |R| independent Poisson random variables
conditioned on a collection of linear inequality constraints (4.2). It is natural to look
for a limit theorem as the capacities C;,j€.J, and the offered traffics v,,reR, are
increased together (with ratios C;/v, held fixed). We would expect the distribution
(4.1) to approach that of |R| independent normal random variables conditioned on a
collection of linear inequality constraints. Limit results of this form are familiar when
the linear inequalities are replaced by linear equalities, and arise naturally in the
analysis of contingency tables (see, for example, Haberman 1974). The primal
problem (4.5) and its solution (4.11) simply establish the form of the centring term
in the expected central limit theorem (Kelly 1986; Hunt & Kelly 1989; Hunt 1990).

The central limit theorem implies, as a form of law of large numbers, that

L,~1-11(1-B;), reR, (4.13)
jer
where B = (B;,j€J) is a solution to the dual problem (4.7). Here 1—L, is the exact
acceptance probability, given by expression (4.4), and the limit is as capacities C' and
offered traffics v are increased together, with ratios held fixed. Under this limiting
régime it is as if links block independently, link j blocking with probability B,;.
The law of large numbers (4.13) has great appeal as a theoretical limit, but it has
disappointing accuracy as a general approximation. In practice L, is often
approximated by the form
L, ~1-II(1-B;), reR, (4.14)
jer
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358 F.P. Kelly
but where B;,j€.J, solve the nonlinear equations
B;=E(p;,0)), jed, (4.15a)
p;= 2 v, Il (1-By, jed. (4.150b)

r:jer ier—{j}
Here the function E(-,-) is defined for scalar v and C by

, VC C p X

Ew,C) = O![Eon!], (4.16)
and is thus just Erlang’s celebrated formula for the proportion of calls lost at single
link of capacity C' circuits offered Poisson traffic at rate v. The idea underlying the
approximation is simple to explain. Suppose that a Poisson stream of rate v, is
thinned by factor 1 — B, at each link ¢€r—{j} before being offered to link j. If these
thinnings could be assumed independent both from link to link and over all routes
passing through link j (they clearly are not), then the traffic offered to link j would
be Poisson at rate (4.15b), the blocking probability at link j would be (4.15a), and
the loss probability on route r would satisfy (4.14) exactly.

A solution B = (B;,j€J) to equations (4.15) exists, by the Brouwer fixed point
theorem, but is it unique? We shall answer this question, and relate the
approximation scheme (4.14)—(4.15) to our earlier limit results, by consideration of
an appropriate optimization problem.

Define a function U(y, C') by the implicit relation

U(—In (1—E(v,0)),0) = v(1—E(v, 0)). (4.17)

Observe that as v increases from 0 to co the first argument of U increases from 0 to
oo and so this implicit relation defines a function U: R, x Z,_— R.. Indeed, for a single
link of capacity C circuits the quantity U(y, C) is just the mean number of circuits in
use (the utilization) when the blocking probability is 1 —exp(—vy). Thus U(y,C) is a
strictly increasing function of y. Consider the following variant of the problem (4.7),
which we shall call the revised dual problem.

.
Minimize X v, exp (— X y,)+3 f Uz, €)) dz, (4.18a)
T jJo

jer
over y=0. (4.180)

Since Uy, C) is a strictly increasing function of y, [¥ U(z,C)dz is a strictly convex
function of y. Hence the objective function (4.18a) is strictly convex, with a unique
minimum. The objective function is also differentiable: hence the stationarity
conditions
S v, exp (=S yy) = Uy, C), je, (4.19)
rifer ier
obtained by differentiating the objective function with respect to y,,j€.J, locate a
unique vector y = 0. Now suppose that (B;,j€/J) is a solution to equations (4.15).
Under the equivalence B = 1—e ¥ and using the definition (4.16), these equations
become precisely equations (4.19). We deduce that equations (4.15) have a unique
solution, given in terms of the optimum ¥ of the problem (4.18) by the transformation
(4.9).
The conditions (4.10) insist that the carried traffic on a link must equal capacity
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before the blocking probability on that link can be positive. Conditions (4.19) are a
natural relaxation: as carried traffic approaches capacity, blocking increases, in a
manner corresponding to the utilization function U. Note that replacing the function
U by a function

Ufz,C)=C, z>0,

reduces the revised dual problem (4.18) to the dual problem (4.7). The utilization
function U; would be natural for fluid flow, where if there is any blocking then all
capacity is in use. For C' large there is not much difference between U and U;: under
the limiting régime considered earlier, where €' and v increase together, the objective
function (4.18a) approaches a scaled version of the objective function (4.7a). For
non-limiting values of v and C' the approximation (4.14) is generally much improved
when the vector B is defined, via the transformation (4.9), in terms of the optimum
to the revised dual problem (4.18) rather than an optimum to the dual problem (4.7).
This is intuitively plausible, since, as we have seen, the various equivalent
formulations (4.15), (4.18) and (4.19) reflect the fact that as a link’s utilization
approaches its capacity, the link’s blocking increases smoothly. As might be further
expected from the informal motivation of the fixed point equations (4.15) in terms
of thinned and superimposed Poisson streams, the approximation scheme
(4.14)—(4.15) becomes increasingly accurate the more diverse the collection of routes
passing through each link (for reviews, see Whitt 1985; Ziedin§ 1987 ; Kelly 1991).

Thus the loss network, defined earlier in terms of Poisson arrival streams and
certain rules for accepting calls, can also be viewed as a system implicitly attempting
to solve the optimization problems (4.7) or (4.18). It is amusing to note that the term

Zvr exp (—E%) = ZVrH (I_Bj)a

r Jer r Jer
appearing in both objective functions corresponds to the average level of traffic
carried by the network; we would much prefer the network to be implicitly
maximizing this term !

The loss network so far considered is a rather simple one, involving just fixed
routing: if a call fails to be accepted on its fixed route then it is lost. In practice,
networks often attempt to improve performance by allowing alternative routing,
where a call which is blocked on a route may try again on an alternative route. We
now consider a simple example of alternative routing in a fully connected network.
Suppose that K nodes are linked to form a complete graph. Between any pair of
nodes calls arise at rate v, and there is a link of capacity C. If there is a spare circuit
on the link joining the end points of a call then the call is accepted and carried by
that circuit. Otherwise the call chooses at random a two-link path joining its end
points: the call is accepted on that path if both links have a spare circuit, and is lost
otherwise.

The generalization of equations (4.15) is based on the same underlying
approximation, that links block independently. Let B be the link blocking
probability, taken to be the same for each link. The probability that a call overflows
from its first choice route is B, and the probability it can be accepted at the other link
of a two-link alternative route is 1 —B; the arrival rate of overflowing calls at a link
is then 2vB(1 —B). We should look for a solution to the fixed point equation

B = E(v+2vB(1—B),0), (4.20)
for B.
Phil. Trans. R. Soc. Lond. A (1991)
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Figure 2. Instability of blocking probability.

The locus of points satisfying equation (4.20) is illustrated in figure 2. Observe the
possibility of multiple solutions for B, when C is large enough and for a narrow range
of the ratio v/C. Are the multiple solutions evident in figure 2 a real phenomenon, or
are they simply an artefact of the approximation ? This question has been tackled by
simulation of similar fully connected networks with tens or scores of nodes, and by
rigorous analysis of the model as the number of nodes tends to infinity (Akinpelu
1984 ; Ackerley 1987 ; Gibbens et al. 1990 ; Crametz & Hunt 1991). The conclusions are
clear. For networks with a moderate or large number of nodes the upper and lower
solutions for B in figure 2 correspond to distinct, locally stable modes of a stationary
distribution. There is also a hysteresis effect: if v is varied slowly the mode which
obtains may depend not just on the current value of v but also upon whether v
approached this value from above or below. An intuitive explanation is easy to
provide. The lower solution corresponds to a mode in which blocking is low, calls are
mainly routed directly and relatively few calls are carried on two-link paths. The
upper solution corresponds to a mode in which blocking is high and many calls are
carried over two-link paths. Such calls use two circuits each, and this additional
demand on network resources may cause a substantial number of subsequent calls
also to attempt two-link paths. Thus a form of positive feedback may keep the
system in the high blocking mode.

It is interesting to reinterpret this discussion in the language of catastrophe theory
(Poston & Stewart 1978), as we now briefly indicate. By differentiating the potential
function

Y
Ve‘y+ve‘2y(1—%e‘y)+J Uz, C)dz, (4.21)

0

we find that it is stationary with respect to y when
ve V4 2ve (1 —eY) = Uy, (). (4.22)

However, under the equivalence B =1—e™? and using the definition (4.17), the
equation (4.22) becomes precisely the equation (4.20). Thus the solutions illustrated
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in figure 2 locate the stationary points of the potential function (4.21). If we regard
v/C as the normal variable and C as the splitting variable, then figure 2 illustrates
three cross sections of the cusp catastrophe.

Comparing the potential function (4.21) with the objective function (4.18a) of the
revised dual problem, we see that alternative routing has led to the introduction of
the second term in expression (4.21), and hence to non-convexity and multiple
minima. The system is again implicitly minimizing a function, and bistability is to
be expected when the function has two local minima.

For the parameter choice (v,C) = (95,100) the network loss probability,
B[1—(1—B)?%], takes a value of about 0.12. If alternative routing is not allowed, so
that a call blocked on its direct link is lost, then the network loss probability is given
by Erlang’s formula (4.16) to be 0.05. Thus allowing a blocked call to attempt a two-
link alternative route may increase the loss probability of the network. We have seen
that this is plausible, since if a link accepts an alternatively routed call then it may
later have to block a directly routed call, which will then attempt to find two circuits
elsewhere in the network. A natural response is to allow a link to reject alternatively
routed calls if the number of idle circuits on the link is less than or equal to a certain
value, t, say. This method of giving priority at a link to certain traffic streams is
known as trunk reservation, and the parameter ¢ is called the trunk reservation
parameter for the link. With trunk reservation in place alternative routing is capable
of improving performance, and trunk reservation is widely used in telephone
networks (Songhurst 1980).

5. Adaptive routing in loss networks

We have seen in the last section that the various potential functions implicitly
minimized bear little direct relation to the network performance criteria of interest
to system designers. In this section we show that an explicit consideration of such
criteria can lead to decentralized adaptive routing schemes which are at least
attempting to optimize the right function.

Suppose that each call carried on route r generates an expected revenue w, (or,
equivalently, interpret w, as the cost of losing a call on route r). Then, under the fixed
point model (4.15), the rate of return from the network will be

Ww;C)=Xw,A,,

where A, =, I1(1-By),

Jer
corresponds to the traffic carried on route r. We use the notation W(v;C) to
emphasize the dependence of W on the vectors of offered traffics (v,,reR) and
capacities (C;,j€J). Let

0y = pi(E(p;, C;— 1) —E(p;, Cy)). (5.1)

Extend the definition (4.16) to non-integral values of scalar C' by linear interpolation,
and at integer values of C; define the derivative of W(v;C) with respect to C; to be
the left derivative. Then it is possible to prove (Kelly 1988) that

a4

m W(v;C) = s,11(1—B,), (5.2)

jer
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d
and d—C'jW(V’C) =¢;, (5.3)

where s = (s,,re R) and ¢ = (c;,j€J) are the unique solution to the linear equations

8, = w,— 2 ¢y, (5.4)
Jjer
¢; =0; Z /\,(sr—r—cj)/ E A, (5.5)
r:jer rijer

We can interpret s, as the surplus value of a call on route r: if such a call is accepted
it will earn w, directly but at an implied cost of c; for each circuit used from link j.
The implied costs ¢ measure the expected knock-on effects of accepting a call upon
later arrivals at the network. From (5.3) it follows that c; is also a shadow price,
measuring the sensitivity of the rate of return to the capacity C; of link j. The local
character of equations (5.4) and (5.5) is striking. The right-hand side of (5.4) involves
costs ¢; only for links j on the route 7, while (5.5) exhibits ¢, in terms of an average,
weighted over just those routes through link j, of s, +c;.

Expression (5.1) for d; is called Erlang’s improvement formula (Brockmeyer et al.
1948). Observe that d; is simply the increase in the rate at which calls are blocked if
a single link offered Poisson traffic at rate p; has its capacity reduced by one circuit,
and that d; increases from zero to one as p; increases from zero to infinity.

Next we describe how equations (5.4) and (5.5) can be used as the basis for
decentralized control of routing through the network. As motivation it is helpful to
think in terms of the following model of a distributed computation. Suppose there is
limited intelligence in the form of arithmetical processing ability available for each
link j and for each route r. This intelligence may be located centrally or it may be
distributed over the nodes of the network; for example the processing for route »
might be carried out by the source node for calls on route r. Suppose also that there
is the possibility of limited communication between the intelligences of link j and
route r provided jer. Consider now equations (5.4) and (5.5). One method for
attempting a solution to these equations is repeated substitution. Choose a vector c;
substitute it in equation (5.4) to obtain a vector s; substitute these into equation
(5.5) to obtain a revised vector ¢, and repeat. This computation can, however, be
distributed over the intelligences of links and routes, since equation (5.4) for s,
involves implied costs ¢; only for links j on the route r, while equation (5.5) for ¢;
involves only surplus values s, for routes r passing through link j. Kelly (1988)
showed that if

Y 0,<1, jer, reR, (5.6)

der—{j)

then repeated substitution converges to the unique solution of the equations. When
the condition (5.6) is not satisfied it may be necessary to damp the repeated
substitution to obtain convergence. This can still be implemented by a distributed
computation, but the individual intelligences may require some knowledge of the
network beyond that locally available, to damp sufficiently the repeated substitution.
In fact it is enough for the intelligences to know just one item of global information,
namely J, the total number of links in the network.

The quantities d; and A, appearing in equations (5.4) and (5.5) are not fixed and
known. However, they can be estimated by intelligences of links and routes from, for
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example, local measurements of carried loads. The estimates can then be used in a
distributed computation of the vector s. Finally the derivatives (5.2) can be used to
implement a decentralized hill-climbing search procedure able to adapt routing
patterns in response to changes in the demands on the network.

The inequality (5.6) limits the size of knock-on effects and is a form of light traffic
condition. If it is satisfied then the fixed point model (4.15) has a certain stability
property : any perturbation of the capacity C; of link j may cause a change in the
entire vector (A,, r € R) of carried traffics, but the change in component A, diminishes
rapidly with the extent of the separation between route r and link j. Without
condition (5.6) perturbations may have influence over arbitrarily great distances.
The existence of such effects is not an artefact of the approximation : examples have
been deduced from the exact stationary distribution (4.1). The discussion of these
effects is complicated by frustration, the crucial property that lies at the heart of the
spin glass problem of statistical mechanics, whereby chains of influence throughout
the network may be out of phase and compete with one another. The reader is
referred to Kelly (1991) for further discussion and references.

It is possible to define implied costs and surplus values for fixed point models of
alternative routing and trunk reservation, and to show that they solve linear
relations generalizing (5.4) and (5.5) (see Key 1988 ; Key & Whitehead 1988; Kelly
1990). The potential for long-range order and instability is more pronounced in
networks with alternative routing, since the chains of influence along different paths
tend to reinforce one another. The possibility emphasizes the importance of treating
a network as a whole: the local benefits of a capacity or routing change may be
completely overwhelmed by adverse consequences elsewhere in the network.

6. Dynamic Alternative Routing

The routing scheme discussed in the last section attempts to control the network
by explicitly computing average traffics, implied costs and surplus values, and
deducing derivatives of performance criteria. The scheme resembles the adaptive
schemes of §3, and indeed the implied costs precisely parallel the tolls discussed here.
Might it be possible to design a network so that it instead resembles the electrical
network of §2, with simple rules for call acceptance and routing leading naturally to
good behaviour? Early work on this question has led to a scheme, Dynamic
Alternative Routing (DAR), now being implemented in British Telecom’s British
trunk network.

DAR is a simple but effective dynamic routing strategy, which is decentralized and
uses only local information. Its definition for a fully connected network is as follows.
Suppose there are K nodes in the network, with the link {7, j} joining nodes ¢ and j
having capacity C};. Each link is assigned a trunk reservation parameter ¢;;, and each
source—destination pair (¢,7) stores the identity of its current tandem k(¢, j) for use in
two-link alternative routes. A call between nodes ¢ and j is first offered to the direct
link and a call is always routed along that link if there is a free circuit. Otherwise,
the call attempts the two-link alternative route via tandem node k& with trunk
reservation applied to both links. If the call fails to be routed via k, this call is lost
and, further, the identity of the tandem node is reselected (at random perhaps) from
the set {1,2,...,K}—{i,j}. Note especially that the tandem node is not reselected if
the call is successfully routed on either the direct link or the two-link alternative
route. Mees (1986) has coined the term sticky random routing to emphasize this
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property of the scheme. In practice it has been found simpler to reselect a tandem
node by cycling around a fixed random permutation ; the point is that reselection is
not based on any collected data, only the important information that a call has just
failed.

Let p,(¢,7) denote the long-run proportion of calls between ¢ and j which are offered
to tandem node k, and let ¢,(¢,j) be the long-run proportion of those calls between
¢ and j and offered to tandem node k which are blocked. Then, under uniform
reselection,

pa(i’j) Qa(i’j) = pb(@’j) QD(iaj)? a, b # 7“’.7

Observe that this simple ergodic result is exact for either random reselection or
reselection using a fixed permutation. More generally, suppose the DAR mechanism
for reselection of the tandem node between ¢ and j chooses node k with long-run
frequency f,, where X, _, . f, = 1. Then each selection of node £ is paired with a failed
call via node k, and so

Pa(8:)) 4a(0:9) :0p(5.0) (0, 5) = fo i for @b #1,5. (6.1)

Observe that if the blocking ¢,(¢,) is high on the path through the tandem node £,
then the proportion of overflow routed via node k will be low. This gives some insight
into the means by which the routing scheme implicitly adapts to overloads and
failures.

For further insight consider next the effects of mismatches between traffics and
capacities. Suppose that traffic is greater than capacity on some links, and less than
capacity on others. Is it possible for the excess traffic from overloaded links to be
assigned to alternative routes which do not themselves clash with one another; and,
if so0, is it possible for this to be achieved by a simple algorithm ? To proceed with
these questions, consider the following random graph problem. Choose pe (0, 1) and
suppose the edges of a fully connected graph on K nodes are independently coloured
red with probability p and white with probability 1 —p. Let a triangle be a set of three
edges joining each pair from a set of three nodes. Call a triangle good if it contains one
red and two white edges. Let P(K) be the probability that there exists a set of disjoint
good triangles such that each red edge is contained in a triangle. If we interpret the
red edges as overloaded links, then P(K) is the probability that there exists a
collection of non-overlapping alternative routes. Hajek (1987) has shown that if
p <j then P(K)—>1 as K—o0. Hajek’s methods are informative about the per-
formance of algorithms as well as the structure of random graphs, and we outline one
aspect of his proof. Consider the following very simple greedy algorithm. Suppose
disjoint good triangles 7}, 7}, ..., T} have been found already and the algorithm has not
yet stopped. If there is no remaining red edge, declare the algorithm successful and
stop. Otherwise, call a triangle available (after k steps) if it is a good triangle which is
disjoint from 7}, 7,,...,T;. Choose a red edge e at random from the remaining red
edges. If no available triangle contains e, declare the algorithm unsuccessful and
stop. Otherwise, choose 7, at random from among the available triangles containing
e. Hajek conjectures that this simple greedy algorithm is successful with probability
approaching 1. He proves that when the algorithm stops it has covered at least a
proportion 1—4¢ of the red edges with probability approaching 1 as K oo, for any
d > 0. He establishes the above result by consideration of a modified algorithm.
Choose ¢ with 0 < e < 1—p. Independently consider each white edge and delete it
with probability e. Now run the original algorithm (although now only available
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triangles with non-deleted edges are counted). Then this modified algorithm is
successful with probability approaching 1.

It is informative that a simple greedy algorithm performs so well for the above
random graph problem. In many respects DAR resembles a dynamic version of the
greedy algorithm. It also has a number of similarities with probabilistic hill-climbing
techniques such as simulated annealing, and Gibbens (1988) and Mitra & Seery
(1991) have discussed its use as an algorithm to investigate random graph and
network routing problems. Consider the multi-commodity flow problem of routing
n(n— 1) distinct flows between each ordered pair of n nodes. As a linear program this
problem has O(n?®) variables, since each of n(n— 1) ordered node pairs has one direct
route and (n—2) two-link alternatives available, and O(n?) constraints, associated
with the in(n—1) links and distinct flows (cf. Gibbens & Kelly 1990). The problem
has a natural mapping onto a computing engine with O(n?) parallel processors. DAR
tackles the nonlinear stochastic version of this problem using a probabilistic hill-
climbing technique performed by O(n?) parallel processors, namely the occupancy
levels of the in(n—1) links and the n(n—1) tandem pointers k(z, j).

The formula (6.1) allows the fixed point methods described in §4 to be extended to
model DAR; these methods, together with simulation, have been used to investigate
the performance of AR under a wide range of failure and overload conditions. For
an account of this work, and extensions of DAR to regular but non-fully connected
networks, the reader is referred to Stacey & Songhurst (1987), Gibbens (1988),
Gibbens et al. (1988), Gibbens & Kelly (1990), Gibbens & Turner (1991).

The routing scheme described in §5 has the advantage that it makes no special
assumption about the underlying topology of the network, but it adapts slowly, in
response to averaged values. DAR, in comparison, requires some regularity of network
structure, but operates on a fast timescale, driven by call arrivals, and uses very
simple rules. Because of the different timescales involved it is quite possible that the
benefits of both schemes may be achievable: certainly Key (1988) has described an
approach to the calculation of implied costs and shadow prices for a fully connected
network using DAR, and has shown how the shadow prices can be used interactively
to allocate capacity in a network. Current research is developing methods which use
sticky random routing on a fast timescale, driven by call arrivals or failure events,
with route sets, priorities and trunk reservation selected using implied costs
calculated over the longer timescales necessary for averages to be estimated.

This paper is an expanded version of a talk first given at the Annual Meeting of the British
Association for the Advancement of Science, in Sheffield, 1989. The author gratefully acknowledges
the support of the Science and Engineering Research Council, under grant GR/E83009.
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